Find the area under the curve of y=x^2 between the values of x as 1 and 3

First you should express this in the correct format using the integral sign. We need to find the integral with respect to x so include dx in the equation before integrating. To integrate we add one to the power and divide the result by the new power. This new result is put in square brackets with the limits of 3 and 1 to the side. In order to find the answer you must substitute in the correct limits, in this case 3 and 1. The equation with 1 substituted in will be subtracted from the equation with 3 substituted in. This final result is the area under the curve.

KP
Answered by Kishan P. Maths tutor

2991 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write 36% as a fraction in its simplest terms.


x^3 + 3x^2 + 2x + 12


The quadratic equation x^2 + 4kx+2(k+1) = 0 has equal roots, find the possible values of k.


Find the area bounded be the curve with the equation y = x^2, the line x = 1, the line x = -1, and the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning