Prove that the square of an odd integer is odd.

Let n be an odd integer. This means that n is 1 more than an even integer. By definition, even integers are multiples of 2 so all even integers can be written in the form 2m where m is an integer. Therefore, n = 1 + 2m.n2 = (1+2m)2 = 1 + 4m + 4m2 = 1 + 2(2m + 2m2)Again, by definition, 2(2m + 2m2) is even. Therefore, n2 is 1 more than an even integer meaning that n2 is also odd.Thus, we have proven what was required.

Answered by Mary O. Maths tutor

2944 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x^3+2x^2+x=0


express (1+4(root7)) / (5+2(root7)) as a+b(root7), where a and b are integers


Find the turning points on the curve with the equation y=x^4-12x^2


Perhaps an introduction to integration with a simple integral, e.g. the integral of x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences