Prove that the square of an odd integer is odd.

Let n be an odd integer. This means that n is 1 more than an even integer. By definition, even integers are multiples of 2 so all even integers can be written in the form 2m where m is an integer. Therefore, n = 1 + 2m.n2 = (1+2m)2 = 1 + 4m + 4m2 = 1 + 2(2m + 2m2)Again, by definition, 2(2m + 2m2) is even. Therefore, n2 is 1 more than an even integer meaning that n2 is also odd.Thus, we have proven what was required.

MO
Answered by Mary O. Maths tutor

3583 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^2 ln(3x) with respect to x


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Express '6cos(2x) +sin(x)' in terms of sin(x).


Express 1/((x^2)(1-3x) in partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning