Prove that the square of an odd number is always 1 more than a multiple of 4.

First we consider how to represent an odd number. We know that any even number can be represented as 2k for some integer k since, by definition, all even numbers are multiples of 2. We also know that all odd numbers are 1 more than an even number. Thus, any odd number can be written as 2k + 1. Similarly, we know that any multiple of 4 can be written as 4k for some integer k, so any number that is one more than a multiple of 4 can be written as 4k + 1.Now let us consider an arbitrary odd number n = 2m + 1 for some integer m. We aim to square this and rearrange the result into the form 4k + 1. Squaring n gives us n2 = (2m + 1)2 = (2m + 1)(2m + 1) = 4m2 + 4m + 1. This can be written as n2 = 4(m2 + m) + 1. Since we know that m is an integer, we also know that m2 + m is an integer, and therefore n2 = 4(m2 + m) + 1 is 1 more than a multiple of 4. Since n is arbitrary, this is true for any odd number and therefore we have proven that the square of an odd number is always 1 more than a multiple of 4.

JL
Answered by Josh L. Maths tutor

9244 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ladder 6.8m long is leaning against a wall. The foot of the ladder is 1.5m from the wall. Calculate the distance the ladder reaches up the wall.


White paint costs £2.80 per litre and blue paint costs £3.50 per litre. White and blue paint are mixed in the ratio 3 : 2. How much does it cost to make 18 litres of this mixture?


Find the value of 5x - 3y when x = -2 and y = -4


Make x the subject of the formula 3(2x – y) = ax – 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning