How do you find the integral of sin^2(x) dx?

Sin^2(x) cannot be integrated in its current form so you must use trigonometric identities to change sin^2(x) into something else.

Use the formula for cox(2x): cos(2x)=cos(x+x)=cos^2(x)-sin^2(x)

Now use that cos^2(x)=(1-sin^2(x))

So cos(2x)=1-2sin^2(x)

Rearrange the equation to find that sin^2(x)=1/2-1/2(cos(2x))

Now you can integrate to get that the integral of sin^2(x)=1/2x-1/4sin(2x)

Answered by Chloe W. Maths tutor

8015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


Find the constant term in the expression (x^2-1/x)^9


Differentiate y = xe^(2x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences