How do you find the integral of sin^2(x) dx?

Sin^2(x) cannot be integrated in its current form so you must use trigonometric identities to change sin^2(x) into something else.

Use the formula for cox(2x): cos(2x)=cos(x+x)=cos^2(x)-sin^2(x)

Now use that cos^2(x)=(1-sin^2(x))

So cos(2x)=1-2sin^2(x)

Rearrange the equation to find that sin^2(x)=1/2-1/2(cos(2x))

Now you can integrate to get that the integral of sin^2(x)=1/2x-1/4sin(2x)

Answered by Chloe W. Maths tutor

7706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I calculate the rate of change of something for which I don't have an equation?


differentiate- X^3- 2X^2+3


Find the equation of the tangent to the unit circle when x=sqrt(3)/2 (in the first quadrant)


Express [1+4(square root)7] /[ 5+ 2(square root)7] in the form m + n (square root)7 , where m and n are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences