How do you find the integral of sin^2(x) dx?

Sin^2(x) cannot be integrated in its current form so you must use trigonometric identities to change sin^2(x) into something else.

Use the formula for cox(2x): cos(2x)=cos(x+x)=cos^2(x)-sin^2(x)

Now use that cos^2(x)=(1-sin^2(x))

So cos(2x)=1-2sin^2(x)

Rearrange the equation to find that sin^2(x)=1/2-1/2(cos(2x))

Now you can integrate to get that the integral of sin^2(x)=1/2x-1/4sin(2x)

CW
Answered by Chloe W. Maths tutor

9103 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation dy/dx=(y^(1/2))*sin(x/2) to find y in terms of x.


What is the double angle formula?


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


Express 1/((x^2)(1-3x) in partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning