Differentiate y=3xe^{3x^2}+2x

We differentiate y with respect to x:Firstly, we apply the Chain rule in the fist part of the RHS. Remembering the chain rule is uv -> u'v+uv', so d(3xe^{3x^2})/dx=3e^{3x^2}+18x^{2}e^{3x^2}now, we simply differentiate 2x to 2.Now combining our results:dy/dx = 3e^{3x^2}+18x^{2}e^{3x^2} + 2
Typically 4/5 marks for AS-level papers.

Answered by John A Alejandro B. Maths tutor

2826 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For a curve of equation 2ye^-3x -x = 4, find dy/dx


If the function f is defined as f= 1-2x^3 find the inverse f^-1


Prove by induction that the nth triangle number is given by n(n+1)/2


Find the set of values of x for which 3x^2+8x-3<0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences