How do we differentiate y = arctan(x)?

Step 1: Rearrange y = arctan(x) as tan(y) = x.

Step 2: Use implicit differentiation to differentiate this with respect to x, which gives us:

(dy/dx)*(sec(y))^2 = 1.

Step 3: Rearrange this equation to give us:

dy/dx = 1/(sec(y))^2.

Step 4: Use a trigonometric identity to substitute and find that:

dy/dx = 1/(1+((tan(y))^2).

Step 5: Recall that x = tan(y) and substitute this to find: 

dy/dx = 1/(1+x^2).

Done.

SC
Answered by Solly C. Maths tutor

75008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?


The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences