How do we differentiate y = arctan(x)?

Step 1: Rearrange y = arctan(x) as tan(y) = x.

Step 2: Use implicit differentiation to differentiate this with respect to x, which gives us:

(dy/dx)*(sec(y))^2 = 1.

Step 3: Rearrange this equation to give us:

dy/dx = 1/(sec(y))^2.

Step 4: Use a trigonometric identity to substitute and find that:

dy/dx = 1/(1+((tan(y))^2).

Step 5: Recall that x = tan(y) and substitute this to find: 

dy/dx = 1/(1+x^2).

Done.

Answered by Solly C. Maths tutor

69313 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find an angle in a right-angled triangle when you are given two of its side's lengths?


How do I check if events are independent (in statistics / probability)?


Ball P is shot at 18m/s horizontally from the top of a 32m mast. Ball Q is shot at 30m/s at an angle 'a' to the horizontal from the bottom of the mast. They collide mid-air. Prove that cos'a' = 3/5


What is the derivative of x^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences