How do we differentiate y = arctan(x)?

Step 1: Rearrange y = arctan(x) as tan(y) = x.

Step 2: Use implicit differentiation to differentiate this with respect to x, which gives us:

(dy/dx)*(sec(y))^2 = 1.

Step 3: Rearrange this equation to give us:

dy/dx = 1/(sec(y))^2.

Step 4: Use a trigonometric identity to substitute and find that:

dy/dx = 1/(1+((tan(y))^2).

Step 5: Recall that x = tan(y) and substitute this to find: 

dy/dx = 1/(1+x^2).

Done.

Answered by Solly C. Maths tutor

66943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show (2-3i)^3 can be expressed in the form a+bi where a and b are negative integers.


Find the indefinite integral tan(5x)tan(3x)tan(2x)


Find the derivative of f where f(x)=a^x.


Sketch the curve y=x^2-x-6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences