How do we differentiate y = arctan(x)?

Step 1: Rearrange y = arctan(x) as tan(y) = x.

Step 2: Use implicit differentiation to differentiate this with respect to x, which gives us:

(dy/dx)*(sec(y))^2 = 1.

Step 3: Rearrange this equation to give us:

dy/dx = 1/(sec(y))^2.

Step 4: Use a trigonometric identity to substitute and find that:

dy/dx = 1/(1+((tan(y))^2).

Step 5: Recall that x = tan(y) and substitute this to find: 

dy/dx = 1/(1+x^2).

Done.

SC
Answered by Solly C. Maths tutor

81155 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


Find dy/dx when y = 2ln(2e-x)


What is the quotient rule and how is it applied?


Express (x + 1)/((x^2)*(2x – 1)) in partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning