Find the gradient at x=1 for the curve y=2x*e^2x

The answer to this question is in two parts. We firstly must find the derivative of the function y=f(x) with respect to x, and then substitute the value of x given in the question to find the gradient at that point.To find the derivative of the function, we use both the product and chain rule. we see that dy/dx =4xe^2x+2e^2x using these rules for differentiation.we now substitute x=1 into this to find the gradient as 6e^2 at this point.

DD
Answered by Dominic D. Maths tutor

4589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


given y=(1+x)^2, find dy/dx


Find the area enclosed between the curves y = f(x) and y = g(x)


Show how you can rewrite (x+1)(x-2)(x+3) into the form of ax^3 + bx^2 + cx + d


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning