Find the gradient at x=1 for the curve y=2x*e^2x

The answer to this question is in two parts. We firstly must find the derivative of the function y=f(x) with respect to x, and then substitute the value of x given in the question to find the gradient at that point.To find the derivative of the function, we use both the product and chain rule. we see that dy/dx =4xe^2x+2e^2x using these rules for differentiation.we now substitute x=1 into this to find the gradient as 6e^2 at this point.

DD
Answered by Dominic D. Maths tutor

4624 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does 1/x integrate to lnx?


Given y(x+y)=3 evaluate dy/dx when y=1


Given that y=(4x^2)lnx, find f"(x) when x=e^2


Write 9sin(x) + 12 cos(x) in the form Rsin(x+y) and hence solve 9sin(x) + 12 cos(x) = 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning