Find the gradient at x=1 for the curve y=2x*e^2x

The answer to this question is in two parts. We firstly must find the derivative of the function y=f(x) with respect to x, and then substitute the value of x given in the question to find the gradient at that point.To find the derivative of the function, we use both the product and chain rule. we see that dy/dx =4xe^2x+2e^2x using these rules for differentiation.we now substitute x=1 into this to find the gradient as 6e^2 at this point.

DD
Answered by Dominic D. Maths tutor

4618 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiating (x^2)(sinx) Using the Product Rule


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


How do I break down (x-2)/((x+1)(x-1)^2) into partial fractions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning