Cube roots of 8?

8 traditionally has 1 cube root. 2. This is only the real root. It has 2 more complex roots!How can we see this?Consider a vector on the argand diagram. If we square it. What happens to it's magnitude and arguement?So as we can see. If 8 is expressed on an argand diagram. The vector at 2 when cubed maps to 8. But can you see the two other points?In general the nth cube root of a complex number has n roots.

VJ
Answered by Vishal J. Further Mathematics tutor

3543 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are the conditions required for the poisson distribution?


Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


Write (1+2i) /(2-i) in form x+iy


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning