Cube roots of 8?

8 traditionally has 1 cube root. 2. This is only the real root. It has 2 more complex roots!How can we see this?Consider a vector on the argand diagram. If we square it. What happens to it's magnitude and arguement?So as we can see. If 8 is expressed on an argand diagram. The vector at 2 when cubed maps to 8. But can you see the two other points?In general the nth cube root of a complex number has n roots.

Related Further Mathematics A Level answers

All answers ▸

Prove that (AB)^-1 = B^-1 A^-1


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


Write sin(4x) in terms of sin and cos.


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences