Cube roots of 8?

8 traditionally has 1 cube root. 2. This is only the real root. It has 2 more complex roots!How can we see this?Consider a vector on the argand diagram. If we square it. What happens to it's magnitude and arguement?So as we can see. If 8 is expressed on an argand diagram. The vector at 2 when cubed maps to 8. But can you see the two other points?In general the nth cube root of a complex number has n roots.

VJ
Answered by Vishal J. Further Mathematics tutor

2710 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


Solve for z in the equation sin(z) = 2


Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences