Cube roots of 8?

8 traditionally has 1 cube root. 2. This is only the real root. It has 2 more complex roots!How can we see this?Consider a vector on the argand diagram. If we square it. What happens to it's magnitude and arguement?So as we can see. If 8 is expressed on an argand diagram. The vector at 2 when cubed maps to 8. But can you see the two other points?In general the nth cube root of a complex number has n roots.

VJ
Answered by Vishal J. Further Mathematics tutor

3663 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


Integrate ln(x) with respect to x.


Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning