Cube roots of 8?

8 traditionally has 1 cube root. 2. This is only the real root. It has 2 more complex roots!How can we see this?Consider a vector on the argand diagram. If we square it. What happens to it's magnitude and arguement?So as we can see. If 8 is expressed on an argand diagram. The vector at 2 when cubed maps to 8. But can you see the two other points?In general the nth cube root of a complex number has n roots.

Related Further Mathematics A Level answers

All answers ▸

Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences