Why is |z| = 1 a circle of radius one? (FP2)

So, basically |z| = 1 is equal to the set containing all complex numbers where their magnitude is equal to one. Also, by unraveling the definition of |z| we get that (x2+y2)1/2=1 which is the same as x2+y2=1 which we can identify as the circle with centred at (0,0) and radius 1.

Answered by Charalambos M. Maths tutor

2853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use Implicit Differentiation to find dy/dx of the following equation: 3(x)^2 + 8xy + 5(y)^2 = 4


Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


differentiate with respect to x : y = x^2 -5x


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences