Why is |z| = 1 a circle of radius one? (FP2)

So, basically |z| = 1 is equal to the set containing all complex numbers where their magnitude is equal to one. Also, by unraveling the definition of |z| we get that (x2+y2)1/2=1 which is the same as x2+y2=1 which we can identify as the circle with centred at (0,0) and radius 1.

CM
Answered by Charalambos M. Maths tutor

3189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


Find an equation of the circle with centre C(5, -3) that passes through the point A(-2, 1) in the form (x-a)^2 + (y-b)^2 = k


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


How do you find the equation of a line at a given point that is tangent to a circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning