Find the equation of a straight line that passes through the points (2,7) and (5,3)

Since we're told the line is straight, the equation of the line will be of the form y = mx + c.The gradient of the line, m, is the change in y divided by the change in x ; m = (3-7)/(5-2) = - 4/3.Therefore, the line has the equation y = (-4/3)x + c, where c is an unknown value. To find c, put the x and y values of one of the co-ordinates into the equation. For example, considering (2,7) ; 7 = (-4/3)(2) + c.This equation can then be re-arranged to find c ; 7 = -8/3 + c , therefore c = 29/3Therefore, the equation of the straight line is; y = (-4/3)x + 29/3

Answered by Joshua N. Maths tutor

2750 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the square of an odd number is always 1 more than a multiple of 4


solve 2^(3x+1)=16


A cuboid has length x cm. The width of the cuboid is 4 cm less than its length. The height of the cuboid is half of its length. The surface area of the cuboid is 90 cm^2 . Show that 2x^2 − 6x − 45 = 0


3 teas and 2 coffees have a total cost of £7.80 5 teas and 4 coffees have a total cost of £14.20 Work out the cost of one tea and the cost of one coffee.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences