Find the minimum value of the quadratic 3x^2-8x+1.

This is a question about completing the square. The first step involves taking the factor of 3 our of the expression to reach the correct form for completing the square to reach 3(x^2-(8/3)x)+1. Then, consider x^2-(8/3)x and complete the square of this expression. The coefficient of x is -(8/3) so half of that is -(4/3) so we get (x-(4/3))^2-(16/9). We now substitute this back into the expression before so we have 3x^2-8x+1=3(x^2-(8/3)x)+1=3((x-(4/3))^2-(16/9))+1=3(x-(4/3))^2-(16/3)+1=3(x-(4/3))^2-(13/3)and this is in the correct form for completing the square. To find the minimum value we simply have to notice that the smallest value the squared term can be is 0 so the minimum value of the whole expression is -(13/3).

JM
Answered by Jamie M. Maths tutor

3247 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the quadratic equation: x^2 - 2x - 15 = 0


b)You are given g(x) = ax + b; You are also given that g(0) = 4 and g(1) = - 6; Find the value of a and the value of b


√ 5(√ 8 + √ 2) Can be written as "a√ 10". What is the value of a?


Which of these lines are parallel to y=2x+3? Which are perpendicular? Options: 1) y=5x-4, 2) y=-1/3x+3, 3) y=-1/2x-1, 4) y=2x-2/3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning