Find the minimum value of the quadratic 3x^2-8x+1.

This is a question about completing the square. The first step involves taking the factor of 3 our of the expression to reach the correct form for completing the square to reach 3(x^2-(8/3)x)+1. Then, consider x^2-(8/3)x and complete the square of this expression. The coefficient of x is -(8/3) so half of that is -(4/3) so we get (x-(4/3))^2-(16/9). We now substitute this back into the expression before so we have 3x^2-8x+1=3(x^2-(8/3)x)+1=3((x-(4/3))^2-(16/9))+1=3(x-(4/3))^2-(16/3)+1=3(x-(4/3))^2-(13/3)and this is in the correct form for completing the square. To find the minimum value we simply have to notice that the smallest value the squared term can be is 0 so the minimum value of the whole expression is -(13/3).

JM
Answered by Jamie M. Maths tutor

3378 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify sqrt(12)


What do the interior angles in a hexagon add up to?


Find the value of 'x' and state which angle on triangle ABC is smallest. A = right angle, B = 2x + 30, C = 2x


15 machines work at the same rate. Together, the 15 machines can complete an order in 8 hours. 3 of the machines break down after working for 6 hours. The other machines carry on working until the order is complete. In total, how many hours does EACH


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning