Show that G = {1, -1} is a group under multiplication.

We must prove the four axioms of a group are satisfied (i.e Identity, Associativity, Closure, and Invertibility). Identity: The identity element is an element e in G such that ex = xe = x for all x in G. Clearly in this instance e = 1 since 11 = 1 and 1(-1) = -1. Associativity: A group is associative if for all a,b,c in G, a*(bc) = (ab)c. In this instance the associativity clearly follows from the associativity of multiplication. Closure: A group is closed if the product of any two elements of the group is also a member of the group. In this example there are four possible products of the elements, namely 11, 1*(-1), (-1)1, and 11. All of these are either 1 or -1, hence all the products are members of the group {1, -1} so G is closed. Invertibility: To show invertibility we must show that every element of G has an inverse, i.e. for all x in G there exists x-1 in G such that xx-1 = x-1x = e, where e is the identity element (in this case e = 1). Clearly 11 = 1 so that 1-1 = 1. For -1 we see that (-1)(-1) = 1, hence -1-1 = -1. So both 1 and -1 have inverses which are in G, thus G is closed. So all the axioms are satisfied, therefore G is a group.

Related Further Mathematics A Level answers

All answers ▸

Integrate xsin(x).


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


How to approximate the Binomial distribution to the Normal Distribution


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences