Show that G = {1, -1} is a group under multiplication.

We must prove the four axioms of a group are satisfied (i.e Identity, Associativity, Closure, and Invertibility). Identity: The identity element is an element e in G such that ex = xe = x for all x in G. Clearly in this instance e = 1 since 11 = 1 and 1(-1) = -1. Associativity: A group is associative if for all a,b,c in G, a*(bc) = (ab)c. In this instance the associativity clearly follows from the associativity of multiplication. Closure: A group is closed if the product of any two elements of the group is also a member of the group. In this example there are four possible products of the elements, namely 11, 1*(-1), (-1)1, and 11. All of these are either 1 or -1, hence all the products are members of the group {1, -1} so G is closed. Invertibility: To show invertibility we must show that every element of G has an inverse, i.e. for all x in G there exists x-1 in G such that xx-1 = x-1x = e, where e is the identity element (in this case e = 1). Clearly 11 = 1 so that 1-1 = 1. For -1 we see that (-1)(-1) = 1, hence -1-1 = -1. So both 1 and -1 have inverses which are in G, thus G is closed. So all the axioms are satisfied, therefore G is a group.

Related Further Mathematics A Level answers

All answers ▸

It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences