The point P has coordinates (3,4). The Point Q has the coordinates (a,b). A line perpendicular to PQ is given by the equation 3x+2y=7. Find an expression for b in terms of a.

As we appreciate the rule 1: gradient of line PQ multiplied by the gradient of the line perpendicular to it equals -1. Formula: m x mn=-1We use this to find the gradient of line PQ:Firstly, we find the gradient of the line perpendicular to PQ, mn, by rearranging its equation3x+2y=7
2y=3x-7
y=(3/2)x-7/2
Thus the gradient of the perpendicular line, mn=3/2. Using rule 1 it follows that the gradient of line PQ, m, is equal to -1/mn, which equates to -1/(3/2)= -2/3.Then as we appreciate the rule 2: that the gradient between two points P and Q can be defined as (y2-y1)/(x2-x1), and substitute in the coordinates P (3,4) and Q (a,b). We have the expression (b-4)/(a-3).And using our gradient of PQ, m=-2/3, derived from rule 1, we can equate this expression (b-3)/(a-3) to -2/3, and simply have to rearrange to find b in terms of a.(b-4)/(a-3)=-2/3
b-4=(-2/3)(a-3)
b=(-2/3)(a-3)+4 <---------- Which is our final answer!

Answered by Richard T. Maths tutor

5923 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A school has a number of students. One is chosen at random; the probability that the student is female is 2/5. Knowing that there are 174 male students, work out the total number of students in the school.


What is the nth term of the sequence 5, 7, 9, 11....


Solve algebraically: 6a+3b=24, 3a-b=7


You are given a triangle ABC with sides length AB = 20cm, BC = 100cm and angle A = 70 degrees. Find the angle of C in degrees.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences