MEI (OCR) M4 June 2006 Q3

The question may be seen here: https://pmt.physicsandmathstutor.com/download/Maths/A-level/M4/Papers-OCR-MEI/Combined%20QP%20-%20M4%20OCR%20MEI.pdf
i) Let A = 4E-4 W, B=1E4 m/s^2 s.t. P = mAV*(B+V^2).Recognise power = rate of work done by net force P = FV=mdV/dtVHence dV/dt = A(B+V^2). Use chain rule s.t. dV/dt = dV/dxV and separate variables, integrating (dV/dt)V/(B+V^2) = A wrt x, giving V(x) = sqrt(B[exp(2Ax)-1]) noting that V(0)=0. Solve for x, V=80 gives x=618.4<900m available. Also dV/dx>0 for all V!=0 so V is monotonically increasing and this is the only solution.
ii) From (i) we have (dx/dt)/sqrt(exp(2Ax)-1)=sqrt(B). Integrating wrt t, making the substitution u=sqrt(exp(2Ax)-1) gives V(t) = sqrt(B)tan(Asqrt(B)t), again using V(0)=0. This is unbounded towards t=pi/(2Asqrt(B)) and is therefore unphysical for t>39s.
iii) Solving the above model for V=80m/s reveals that the model is out of bounds and the given revision with constant power is required. Plugging in t=11s (model limit) to the earlier equations gives a limit V=47.1m/s, P/m=230.2W/kg, x=250.4m. At constant power, the equation of motion is P/m = V
dV/dt = constant. Integrating wrt t gives V(t) = sqrt(2*(Pt/m+K)), where K =47.1^2/2-230.211 from the boundary condition, i.e. V(t)=sqrt(460.4t-2846). Solving for 80m/s gives t=20.1s (i.e. a solution exists). The corresponding distance travelled may be found by solving the DE V=dx/dt, i.e. integrating the above wrt time, giving x-x(11)=2sqrt(2)/(3P/m)(Pt/m+K)^1.5 on t=[11,20.1]. Thence, x(V=80) is 841.9m<900m available and take off is successful.
Working and diagrams as attachment.

Related Further Mathematics A Level answers

All answers ▸

How to approximate the Binomial distribution to the Normal Distribution


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


Cube roots of 8?


Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences