A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?

First, we find the derivative of h: dh/dt= 4-4t. To find the point(s) of interest, we solve dh/dt=0. This gives the answer t=1. In order to determine whether t=1 is a minimum point or maximum point we find the second derivative of h: d2h/dt2=-4. As the second derivative of h is less than 0, this shows that there is a maximum point at t=1. Therefore, the ball reaches its maximum height when t=1. To determine the maximum height, we substitute t=1 into the equation for h. Here, we find the maximum height achieved by the ball is h=7.

DS
Answered by Debbie S. Maths tutor

5117 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between a scalar and vector quantity?


What are complex and imaginary numbers and how are they different from normal (real) numbers?


Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning