Find the derivative of the arctangent of x function

y = arctan(x)Start by taking the tangent of both sides:tan(y) = xTake the derivative of each side with respect to x, using implicit differentiation/the chain rule for the LHS, then rearrange to make dy/dx the subject:dy/dx = 1/sec^2(y)Use sec^2(y) = 1 + tan^2(y) to change the denominator:dy/dx = 1/(1 + tan^2(y))Plugging our original definition of y into this we get our final result:dy/dx = 1/(1 + tan^2(arctan(x))) = 1/(1 + x^2)

MB
Answered by Mitchell B. Further Mathematics tutor

1831 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I know which substitution to use if I am integrating by substitution?


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


find general solution to: x(dy/dx) + 2y = 4x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences