Find the derivative of the arctangent of x function

y = arctan(x)Start by taking the tangent of both sides:tan(y) = xTake the derivative of each side with respect to x, using implicit differentiation/the chain rule for the LHS, then rearrange to make dy/dx the subject:dy/dx = 1/sec^2(y)Use sec^2(y) = 1 + tan^2(y) to change the denominator:dy/dx = 1/(1 + tan^2(y))Plugging our original definition of y into this we get our final result:dy/dx = 1/(1 + tan^2(arctan(x))) = 1/(1 + x^2)

Related Further Mathematics A Level answers

All answers ▸

What are the different forms of complex numbers and how do you convert between them?


Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


How does proof by mathematical induction work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences