Answers>Maths>IB>Article

Differentiate, from first principles, y=x^2

According to first principles, the differential is found as the limit as h->0 of:[f(x+h)-f(x)] / hif we set our f to x^2, then we find that this expression becomes (x^2+2hx+h^2 - x^2)/hWhich simplifies to 2x+h. As h->0, this leaves us with 2x, which is the derivative of x^2

Answered by Milo E. Maths tutor

1800 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given that f(x)=6x+4 and g(x)=3x^2+7, calculate g of f, for x=2.


Given that y = -16x2​​​​​​​ + 160x - 256, find the value of x giving the maximum value of y, and hence give this maximum value of y.


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


Let f (x) = 5x and g(x) = x2 + 1 , for x ∈  . (a) Find f-1(x) . (b) Find ( f ° g) (7) .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences