Answers>Maths>IB>Article

Differentiate, from first principles, y=x^2

According to first principles, the differential is found as the limit as h->0 of:[f(x+h)-f(x)] / hif we set our f to x^2, then we find that this expression becomes (x^2+2hx+h^2 - x^2)/hWhich simplifies to 2x+h. As h->0, this leaves us with 2x, which is the derivative of x^2

ME
Answered by Milo E. Maths tutor

2528 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the most difficult topic in HL Maths?


Given the parametric equations x = lnt+t and y = sint calculate d^2y/dx^2


Let f(x)= x^2+4, and g(x)= 3x; Find g(f(1))


Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning