Answers>Maths>IB>Article

Differentiate, from first principles, y=x^2

According to first principles, the differential is found as the limit as h->0 of:[f(x+h)-f(x)] / hif we set our f to x^2, then we find that this expression becomes (x^2+2hx+h^2 - x^2)/hWhich simplifies to 2x+h. As h->0, this leaves us with 2x, which is the derivative of x^2

Answered by Milo E. Maths tutor

1834 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do you integrate by parts?


When integrating by parts, how do I decide which part of the integrand is u or f(x) and which dv or g'(x)?


Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5


Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences