Solve the simultaneous equations: 1) 6a+b=11 , 2) 5a-2b=19

To solve, first create a common factor for b by multiplying the 1st equation by 2 to get: 12a+2b=22.Now, add the two equations together to get: (12a+5a) + (2b-2b) = (22+19)which is 17a=41 , when simplified.Solving this we have a=41/17.Now that we have a, we can substitute this value back into one of the original equations and solve it for b.Hence, using equation 1: 6(41/17)+b=11So we get , b = 11 - 6(41/17) b = -59/17You can now check the answers by substituting both a and b into the equations.

Answered by James T. Maths tutor

3342 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3x+18=14x+2


Factorise and solve: x^2 - 8x = -15


The two points (4,9) and (2,3) are on line A. A second line, line B is perpendicular to line A and goes through the point (2,3). What is the equation of line B?


Solve for simultaneous equations x +5y =9 and 3x + 2y =5.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences