Prove the square of an odd number is always 1 more than a multiple of 4

We will start by representing an odd number using algebra. Let n be a integer, i.e. 1,2,3,4,etc. then we can define an odd number as (2n)-1. This is because if a number is of the form 2n it must be even, since it can be divided by 2 and still be a whole number. So, if we take 1 away from the even number, i.e. 2n-1, then it must be odd.
Now we will square our odd number. (2n-1)2 = 4n2-4n+1 =4(n2-n)+1.The first term here 4(n2-n) is clearly a multiple of 4 since we have a 4 outside the brackets. We still have the 1 left over, so we have that the square of an odd number is always 1 more than a multiple of 4.

Answered by Tutor285427 D. Maths tutor

30209 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify: 5(x +y) + 3(4x-2y)


White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


Text books are stored on two shelves. Each shelf is 0.72m long. Each textbook is 30 millimetres wide. Could 50 textbooks be stored on these shelves? (3 marks)


How do I expand and simplify a double bracket equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences