Solve the following two equations simultaneously: 3x + y = 10, x + y = 4

  1. Label the equations Equation 1: 3x + y = 10Equation 2: x + y = 42) Establish if the equations need to be subtracted or added together: 'Same sign is subtract and different sign is add' Therefore we need to subtract the two equations 3) Subtract Equation 2 from Equation 1 in parts 3x - x = 2xy - y = 010 - 4 = 64) Formulate new equation from results2x = 65) Solve for x In this case we need to divide by 2 to find x x = 36) Sub x = 3 back into equation 2 3 + y = 4By subtracting 3 from 4 we get y=17) Check your answer by substituting values of x and y back into equation 1 (3 x 3) + 1 ---> 9 + 1 By calculating this we achieve a result of 10 which proves that our calculation of x and y are correct
Answered by Bethany A. Maths tutor

2478 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + y = 21, x - 3y = 9


Issy goes to buy some fruit. She has been told by one friend that 2 apples and 3 bananas costs £3.80. She has been told by another friend that 5 apples and a banana costs £3.65. what are the individual costs of an apple and a banana?


How do I simplify fully (p^3 x p^4)/p^2?


If I know the length of the hypotenuse and one angle, how do i find the length of the side opposite to the angle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences