Solve the following two equations simultaneously: 3x + y = 10, x + y = 4

  1. Label the equations Equation 1: 3x + y = 10Equation 2: x + y = 42) Establish if the equations need to be subtracted or added together: 'Same sign is subtract and different sign is add' Therefore we need to subtract the two equations 3) Subtract Equation 2 from Equation 1 in parts 3x - x = 2xy - y = 010 - 4 = 64) Formulate new equation from results2x = 65) Solve for x In this case we need to divide by 2 to find x x = 36) Sub x = 3 back into equation 2 3 + y = 4By subtracting 3 from 4 we get y=17) Check your answer by substituting values of x and y back into equation 1 (3 x 3) + 1 ---> 9 + 1 By calculating this we achieve a result of 10 which proves that our calculation of x and y are correct
Answered by Bethany A. Maths tutor

2377 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the difference between the mode, median and mean?


A bag contains only 8 beads. The beads are identical in all respects except colour. 3 of the beads are black and the other 5 beads are white. A bead is taken at random from the bag and not replaced. A second bead is then taken at random from the bag. What


Rearrange to make x the subject of the equation: 4(3x+y) = 12-2y


Jill takes out a loan of £6000 to get a car. The loan has a compound interest of 3% and she takes it out for 4 years. a) How much interest has Jill accrued after 2 years? b) What is the total amount to be paid after 4 years?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences