Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.

x2=9sin2(A) and y2=16cos2(A)Since sin2(A)+cos2(A)=116x2+9y2=16 x 916x2+9y2=144

Answered by Pranav V. Maths tutor

3360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


Given that (cos(x)^2 + 4 sin(x)^2)/(1-sin(x)^2) = 7, show that tan(x)^2 = 3/2


Find the coordinates of the minimum point on the curve: y = x^2 - x - 2


Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences