Solve the equation (x+2)/(x-3)=(x-6)/(x+1) for x.

We need to multiply both sides by the denominator (the bottom of the fraction) in both fractions so we get:(x+2)(x-3)(x+1)/(x-3)=(x-6)(x-3)(x+1)/(x+1)Now, we can see that we can cancel each fraction to get that:(x+2)(x+1)=(x-6)(x-3)Then expanding these brackets we get:x^2+3x+2=x^2-9x+18Now taking away x^2 from both sides, adding 9x to both sides and taking 2 from both sides we get:12x=16This means that x=16/12=4/3

TH
Answered by Tom H. Maths tutor

2615 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A point A lies on the line y = 2x^2 - 8x + 2. A has y-coordinate (-4). Find all possible values for the x-coordinate of A.


The equation of the line L1 is y=4x–8. The equation of the line L2 is 3y–12x+4=0. Show that L1 and L2 are parallel.


Expand and Simplify (5x - 2y)^2


When using trigonometry to calculate side lengths/angles, how do you know which identity to use?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences