Differentiate y = (3x − 2)^4

We recognise that this is in the form of a function within a function, i.e u= 3x - 2 is within the u^4 function, therefore here we will use the chan rule to differentiate the equation. 

The chain rule states that dy/dx = dy/du * du/dx.

Here let u = 3x -2, then du/dx = 3. Similarly, y=u^4 so dy/du = 4u^3. Therefore dy/dx = 3 * 4u^3 = 12u^3.

Finally, we substitute u = 3x - 2 into the equation. This therefore gives us, dy/dx = 12(3x - 2)^3.

Answered by Wajiha I. Maths tutor

15312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


Intergrate ln(x) with resepct to x


How do you find the roots of a cubic equation?


Using the product rule, differentiate: y = (x^2 - 1)(x^3 + 3).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences