Maths A-level Question, Rates of change involving a cylindrical vessel.

What do we know (IN) dv/dt = o.4π(OUT) dv/dt = 0.2π(h)0.5 Initial height of water in vessel is 2.25m Diameter = 4m a) Show that at time t minutes after that tap has been opened, the height h m of the water in the tank satisfies the differential equation 20dh/dt = 2-(h)0.5
dh/dt = dv/dt x dh/dv (1)-By writing this equation we can remove the unwanted element dv which describes the volume of water in the tank.-Where volume = πr2hV = 4πhTherefore, dv/dh = 4π-Now insert what we know into (1) (0.4π-o.2π(h)0.5) x 1/4π = dh/dt -Simplify and isolate.
20dh/dt = 2 - (h)0.5
b)/c) move on to rearranging the differential equation to make an integral where by the time taken to fill the tank can be integrated in terms of h. Resulting in the calculation of the time taken to fill the tank.

ZM
Answered by Zubin M. Maths tutor

3444 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Give an example of a real-world system that would be described by a quadratic equation. Explain the significance of the two real roots, a repeated root, and undefined roots. Is there any significance to a positive or a negative answer in your example?


How do I solve the simultaneous equations x-2y=1 and x^2-xy+y^2=1?


A cuboid has sides such that the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². Calculate the length of the shortest side.


The perimeter of an isosceles triangle is 16cm. One of the sides equals to x+3, while the unequal one equals to x+4. Calculate the area of this triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning