John invests £8000 at compound interest rate of 1.5% per year. He wants to earn more than £2000 in interest. What is the LEAST time in WHOLE years that this will take?

Step 1) Create the formula: 8000 x 1.015nStep 2) Equate to the target value: 8000 x 1.015n = 2000 10000 (Common mistake is to use target of £2000 but you must also take into account the £8000 that is already in the account as this is what will determine the amount of interest John gets per year)Step 3) Re-arrange to get value with 'n' by itself: 1.015n = 5/4Step 4) Use logs to find an exact value for n: Log1.015(1.015n) = Log1.015(5/4) => (Logs in first part of equation cancel) n = 14.988LEAST amount of WHOLE years = 15 (Always round up as if we rounded down the interest earned would be <£2000)

HH
Answered by Hamza H. Maths tutor

3445 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 8x + 2y =46, and 7x + 3y = 47


Jon and Nik share money in the ratio 5 : 2 Jon gets £150 more than Nik. How much money do they share altogether?


15 machines work at the same rate. Together, the 15 machines can complete an order in 8 hours. 3 of the machines break down after working for 6 hours. The other machines carry on working until the order is complete. In total, how many hours does EACH


The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning