Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order

 To simplify this question, it is possible to expand the two elements of the function and then add the two expansions together.First, the expansion of sin(3x) around the origin is sin(30)+d/dx sin(3x)+d²/dx² sin(3x)+d³/dx³ sin(3x)=sin(30)+3cos(30)x-33sin(30)x²/2!-333cos(3*0)*x³/3!+…=0+3x+0x²-27x³/3!+…=0+3x+0x²-9x³/2+… (1)Then, the expansion of e^x is trivial as 1+x+x²+x³… (2) and can be added to our previous result (1), obtaining the final result: f(x)=1+4x+x²/2-25x³/6+…

TD
Answered by Tutor294323 D. Further Mathematics tutor

3283 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Given that abc = -37 + 36i; b = -2 + 3i; c = 1 + 2i, what is a?


Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n


Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences