Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order

 To simplify this question, it is possible to expand the two elements of the function and then add the two expansions together.First, the expansion of sin(3x) around the origin is sin(30)+d/dx sin(3x)+d²/dx² sin(3x)+d³/dx³ sin(3x)=sin(30)+3cos(30)x-33sin(30)x²/2!-333cos(3*0)*x³/3!+…=0+3x+0x²-27x³/3!+…=0+3x+0x²-9x³/2+… (1)Then, the expansion of e^x is trivial as 1+x+x²+x³… (2) and can be added to our previous result (1), obtaining the final result: f(x)=1+4x+x²/2-25x³/6+…

TD
Answered by Tutor294323 D. Further Mathematics tutor

4061 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the modulus of 3+4i?


You have three keys in your pocket which you extract in a random way to unlock a lock. Assume that exactly one key opens the door when you pick it out of your pocket. Find the expectation value of the number of times you need to pick out a key to unlock.


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


Express cos5x in terms of increasing powers of cosx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning