Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order

 To simplify this question, it is possible to expand the two elements of the function and then add the two expansions together.First, the expansion of sin(3x) around the origin is sin(30)+d/dx sin(3x)+d²/dx² sin(3x)+d³/dx³ sin(3x)=sin(30)+3cos(30)x-33sin(30)x²/2!-333cos(3*0)*x³/3!+…=0+3x+0x²-27x³/3!+…=0+3x+0x²-9x³/2+… (1)Then, the expansion of e^x is trivial as 1+x+x²+x³… (2) and can be added to our previous result (1), obtaining the final result: f(x)=1+4x+x²/2-25x³/6+…

TD
Answered by Tutor294323 D. Further Mathematics tutor

4026 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


Find the root of the complex 3+4i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning