Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order

 To simplify this question, it is possible to expand the two elements of the function and then add the two expansions together.First, the expansion of sin(3x) around the origin is sin(30)+d/dx sin(3x)+d²/dx² sin(3x)+d³/dx³ sin(3x)=sin(30)+3cos(30)x-33sin(30)x²/2!-333cos(3*0)*x³/3!+…=0+3x+0x²-27x³/3!+…=0+3x+0x²-9x³/2+… (1)Then, the expansion of e^x is trivial as 1+x+x²+x³… (2) and can be added to our previous result (1), obtaining the final result: f(x)=1+4x+x²/2-25x³/6+…

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


Find the general solution to the differential equation; y'' + 4y' = 24x^2


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


Find the general solution of: y'' + 4y' + 13y = sin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences