Solve D/dx (ln ( 1/cos(x) + tan (x) )

Solve D/dx (ln ( 1/cos(x) + tan (x) ) As always, we approach with a substitution method that we would normally use for differentiating ln (x). So, we try differentiate ln (t) with t= 1/cos(x) + tan(x)So we, would have to differentiate t as the differentiated form of ln(t) is 1/t * dy/dtSo, taking t= 1/cos(x) + tan (x), we do each part individually, and end up with dy/dt= ((cos(x))^-2*)sin(x) (via normal differentiating rules) + sec^2(x) (as tan(x) differentiates to (sec^2) Putting in the form 1/t * dy/dt,We get (Cos(x)^-2)*sin(x) +sec^2(x)) / (1/cos(x) + tan(x))The rest is simplification!the above = (sin(x)/ cos^2(x) + sec^2(x)) / (1/cos(x) + tan(x))(As sin/cos becomes tan multiplied with an extra 1/cos which becomes sec (first term of the numerator))= (tan(x)sec(x) + sec^2(x)) / (sec(x) + tan(x))(by factorising out sec(x)at the numerator)= (sec(x)) (tan(x) + sec(x)) / (tan(x) +sec(x)) Top and bottom cancel out to become final answer= sec(x)!

AD
Answered by Amera D. Maths tutor

3616 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


Find the turning points and their nature of the graph y = x^3/3 - 7x^2/2 + 12x + 4


Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences