Find dy/dx when x+2y+3y^2= 2x^2+1

To solve this question we can use implicit differentiation. We can write:d/dx(x+2y+3y^2)=d/dx(2x^2+1).When differentiating something in terms of y with respect to x we can use the chain rule, this allows us to differentiate with respect to y and multiply by dy/dx. 1+(d(2y)/dy)*dy/dx+(d(3y^2)/dy)*dy/dx=4x, then we differentiate our y values with respect to y: 1+2dy/dx+(6y)dy/dx=4x. Then we need to set dy/dx as the subject of the equation:dy/dx(2+6y)=4x-1, then by dividing each side by (2+6y) we get dy/dx=(4x-1)/(2+6y).

AG
Answered by Adam G. Maths tutor

3630 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A triangle has sides a,b,c and angles A,B,C with a opposite A etc. If a=4,b=3,A=40, what is the area of the triangle?


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


Integrate, with respect to x, xCos3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning