Find dy/dx when x+2y+3y^2= 2x^2+1

To solve this question we can use implicit differentiation. We can write:d/dx(x+2y+3y^2)=d/dx(2x^2+1).When differentiating something in terms of y with respect to x we can use the chain rule, this allows us to differentiate with respect to y and multiply by dy/dx. 1+(d(2y)/dy)*dy/dx+(d(3y^2)/dy)*dy/dx=4x, then we differentiate our y values with respect to y: 1+2dy/dx+(6y)dy/dx=4x. Then we need to set dy/dx as the subject of the equation:dy/dx(2+6y)=4x-1, then by dividing each side by (2+6y) we get dy/dx=(4x-1)/(2+6y).

Answered by Adam G. Maths tutor

2996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the inverse of a function?


Find the normal to the curve y = x^2 at x = 5.


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences