Describe how the strong nuclear force between nucleons varies with seperation of the nucleons.

At short distances between the nucleons at roughly 3 femtometers or so, the strong nuclear force between two nucleons begins to overcome the electrostatic repulsion (if both or one nucleon is a proton). The strong force then becomes it's strongest at roughly 1.5 femtometers, hence meaning that is the typical seperation between two nucleons. At even shorter distances than that the force then starts to become a repulsive force at roughly 0.2 femtometers or so, this is to prevent the nucleons from colliding into a singlarity. 

RW
Answered by Rebecca W. Physics tutor

17970 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 100g mass is on a circular turntable spinning at 78 revolutions per minute. The maximum frictional force between the mass and turntable is 0.50N. Find the maximum distance from the center of the turntable at which the mass would stay on the turntable.


A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


Discuss how the graph of orbital velocities in rotational galaxies against distance from the galactic centre implies the existence of dark matter.


Can you jump a motorcycle into space?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning