Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]

Figure out what skills are being tested: implicit differentiation and exponentials and logarithms.e2y = 5 - e-x2e2y(dy/dx) = e-x(dy/dx) = e-x/ 2e2yAt (0, ln2) (dy/dx) = e0 / 2e2ln2 e2ln2 = 4 as 2ln2 = ln(22) and eln(x)= x (dy/dx) = 1 / 8.

TC
Answered by Theodore C. Maths tutor

3963 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is defined by the equation sin3y + 3y*e^(-2x) + 2x^2 = 5, find dy/dx


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


Integrate sinx*ln(cosx) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning