Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x . [4]

Figure out what skills are being tested: implicit differentiation and exponentials and logarithms.e2y = 5 - e-x2e2y(dy/dx) = e-x(dy/dx) = e-x/ 2e2yAt (0, ln2) (dy/dx) = e0 / 2e2ln2 e2ln2 = 4 as 2ln2 = ln(22) and eln(x)= x (dy/dx) = 1 / 8.

Answered by Theodore C. Maths tutor

3432 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


Rationalise the fraction : 5/(3-sqrt(2))


differentiate parametrically y=3t+4 and x=2t^2 +3t-5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences