Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers

We first differentiate f(x), and we get f'(x)=2x + 5. We then set this equal to 0 and then solve for x. We get that xmin= -2.5. We check whether this was indeed a minimum, by calculating the second derivative, f''(xmin)= 2. Since f''(x) > 0 we know that xmin is indeed a (local) minimum. Then to find the minimum value of f(x), we substitute the value of x back to the equation and get the minimum value of f(x) is -4.25 ((-2.5)^2 + 5(-2.5) + 2 = -4.25))

Answered by Pavlos P. Maths tutor

2928 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate a bracket raised to a power i.e. chain rule


integrate x^2 + 3x + 4


Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)


Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences