The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2

If the roots of this cubic equation are a, b and c, then the equation can be written(z - a)(z - b)(z - c) = 0multiplying this out gives:z^3 - az^2 - bz^2 - cz^2 + abz + acz + bcz - abcgrouping terms with z to the same power in them, this becomes:z^3 + (-a - b - c)z^2 + (ab + ac + bc)z - abcEquating the coefficients in the equation above with the coefficients of the equation in the question gives the following equations:(-a -b - c) =2 ora + b + c = -2and(ab + ac + bc) = 3and-abc = -4.To show that a^2 + b^2 + c^2 = -2, first we need to manipulate our expressions above to get an expression with a^2 + b^2 +c^2 in it. The most obvious way to do this is by squaring (a + b +c) i.e.(a + b + c)^2 = (-2)^2which multiplies out to givea^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 4-> a^2 + b^2 + c^2 + 2(ab + ac + bc) = 4We now that (ab + ac + bc) = 3, so substitue this into the expression abovea^2 + b^2 + c^2 + 2(3) = 4Finally, take away 6 from both sides to get,a^2 + b^2 + c^2 = -2

Related Further Mathematics A Level answers

All answers ▸

How would you show the equation f(x) = 2x – 10 sin x – 2 has a root between 2 and 3 (where x is measured in radians)


Express the complex number (1+i)/(1-i) in the form x+iy


P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences