The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2

If the roots of this cubic equation are a, b and c, then the equation can be written(z - a)(z - b)(z - c) = 0multiplying this out gives:z^3 - az^2 - bz^2 - cz^2 + abz + acz + bcz - abcgrouping terms with z to the same power in them, this becomes:z^3 + (-a - b - c)z^2 + (ab + ac + bc)z - abcEquating the coefficients in the equation above with the coefficients of the equation in the question gives the following equations:(-a -b - c) =2 ora + b + c = -2and(ab + ac + bc) = 3and-abc = -4.To show that a^2 + b^2 + c^2 = -2, first we need to manipulate our expressions above to get an expression with a^2 + b^2 +c^2 in it. The most obvious way to do this is by squaring (a + b +c) i.e.(a + b + c)^2 = (-2)^2which multiplies out to givea^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 4-> a^2 + b^2 + c^2 + 2(ab + ac + bc) = 4We now that (ab + ac + bc) = 3, so substitue this into the expression abovea^2 + b^2 + c^2 + 2(3) = 4Finally, take away 6 from both sides to get,a^2 + b^2 + c^2 = -2

EH
Answered by Eden H. Further Mathematics tutor

6912 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


Given that abc = -37 + 36i; b = -2 + 3i; c = 1 + 2i, what is a?


Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning