Answers>Maths>IB>Article

What does a derivative mean and why does setting it equal to zero allow us to find the minima/maxima of a function

The derivative of a function describes the gradient, also known as the slope. In the simplest terms, the slope defines the change in y divided by the change in x. So if there is a large increase in y for a small increase in x, we have a very large, positive gradient, and vice versa. As an example we can look at an ordinary quadratic equation (e.g.y = x2+5x ). As we move from left to right, the slope is initially large and negative, but moves towards zero. It is zero when the minimum is reached, and there is no change in y for a change in x (a horizontal line). Then the gradient begins to increase and becomes increasingly large and positive.
When we are trying to find the maximum or minimum of a function, we are trying to find the point where the gradient changes from positive to negative or the other way around. When this occurs, the function becomes flat for a moment, and thus the gradient is zero. Since we can find the gradient by taking the derivative of a function, we can simply set the derivative to zero. When this equation is then solved for x, we have found the x value at which the minimum occurs. To find the value of the minimum we simply plug the found x value back into the original function. For the example above, we find dy/dx = 2x +5. If we set this to zero, and solve for x, we find x=-2.5 at the minimum. Plugging this back into the original function we find that the minimum is equal to (-2.5)2 + 5(-2.5) = -6.25.

MD
Answered by Maxime D. Maths tutor

18143 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation (2 cos x) = (sin 2 x) , for 0 ≤ x ≤ 3π .


The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.


How does Euclid's algorithm give solutions to equations?


Determine the integral: ∫5x^4dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences