Given y = x(3x+ 5)^3. Find dy/dx.

First we notice that y can be written as the product of two functions of x, u = x and v = (3x + 5)^3. This means we can use the product rule to differentiate which is dy/dx = uv' + vu'. We can plug our functions u and v into this formula, using the chain rule to differentiate v to arrive at dy/dx = (3x + 5)^3 + 9x(3x + 5)^2. Next we need to simplify by taking out a common factor to get (3x + 5)^2 ((3x +5) + 9x)). Which we can further simplify to (3x + 5)^2 (12x + 5) which is the final answer.

Answered by Michael S. Maths tutor

3831 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate parametrically y=3t+4 and x=2t^2 +3t-5


solve for x, in the form x = loga/logb for 2^(4x - 1) = 3^(5-2x) (taken from OCR June 2014 C2)


Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


Differentiate x^2 ln(3x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences