Given y = x(3x+ 5)^3. Find dy/dx.

First we notice that y can be written as the product of two functions of x, u = x and v = (3x + 5)^3. This means we can use the product rule to differentiate which is dy/dx = uv' + vu'. We can plug our functions u and v into this formula, using the chain rule to differentiate v to arrive at dy/dx = (3x + 5)^3 + 9x(3x + 5)^2. Next we need to simplify by taking out a common factor to get (3x + 5)^2 ((3x +5) + 9x)). Which we can further simplify to (3x + 5)^2 (12x + 5) which is the final answer.

MS
Answered by Michael S. Maths tutor

4410 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx


A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


Event A: a customer asks for help. Event B a customer makes a purchase. We know: p(B) = 0.2 and p(A) knowing that he has asked for help is 75%. What is the probability of a customer to ask for help and make a purchase?


How do I find the integral ∫(ln(x))^2dx ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning