The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5. Work out the area of the triangle.

As we know the ratio of the sides is 3:4:5, label the sides x,y and z respectively. Side x is of length (3/12)*72, side y is of length (4/12)*72 and side z is of length (5/12)72. Giving, x = 18cm, y = 24cm, z = 30cm. Observe x is the base and z is the hypotenuse. Area of a triangle is (base x height)/2. Area = (1824)/2 = 216cm^2

VS
Answered by Viresh S. Maths tutor

2472 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I know which out of the Sine and Cosine rule I should use?


You are given a square which you are told has a total area of 100 squared centimetres. You are also told that one side of the square has dimension 4(3x + 2), and the other has dimension 8x - y. What are the values of x and y?


A sequence increases by 5 each time and the first term is x. The sum of the first four terms is 54. Set up and solve an equation to work out the value of x.


How do I solve a simultaneous equation like this: 2x-5y=3, 3x+2y=14 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences