In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?

This question is dealing with phenomena of Redshift, where wavelengths are shifted due to movement between observer and event. The key information to extract from the question is we have a rest wavelength, an observed wavelength and want a velocity of the galaxy (relative to Earth) from where the light has come from. The observed wavelength is larger than the rest wavelength -> wavelength is increased meaning that the galaxy is moving away, hence the question asks for a recessional velocity . So we should expect a positive velocity as our answer.The formula for redshift is given in the higher formula sheet as Z = (λobs - λrest) / λrestAlso given is Z = V/c , where c is the speed of light. We want to solve for V, as this is the recessional velocity, both equations are equal to Z, so we can equate, meaning :V/c = (λobs - λrest) / λrest -> timesing both sides by c, we get an expression for V in terms of everything we know! V = c(λobs - λrest) / λrest -> c = 3 x 108 m/s , λobs = 656nm , λrest = 661nm (as both rest and obs are in nm we don't need to worry about converting to metres as we calculating a ration) V = 3 x 108 (661-656) / 656 ≈ 2.29 x 106 m/s (always remember units are part of the answer too!)

Related Physics Scottish Highers answers

All answers ▸

Two cables hold a mass of 100kg, joining in the middle of the top of the mass. Two helicopters lift a cable each and hover so that the height of the mass is constant. Each cable makes an angle of 57° with the normal. Find the tension in each cable.


Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.


A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.


If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences