A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).

(a) To differentiate implicitly, differentiate x’s as normal and differentiate y’s with respect to y before multiplying by dy/dx. Therefore the differentiating the curve gives
9x^(1/2) + 10y*(dy/dx) = 0
which can be rearranged to give dy/dx = -9x^(1/2) / 10y
(b) at (4, 3) dy/dx = -94^(1/2) / 103
m^(1/2) is equivalent to √m so
dy/dx = -92 / 103 = -3 / 5

Answered by Matthew L. Maths tutor

3001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .


express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.


Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences