given y=(1+x)^2, find dy/dx

There are two ways in which this we can do this,

The first is explanding the brackets to get 1+2x+x2 and differentiating to get 2+2x.

The second way is using the chain rule, let u=1+x such that y=u2 and differentiate both equations to get du/dx=1 and dy/du=2u. (du/dx)(dy/du)  = dy/dx. plug theses together and we get dy/dx = 2u. To finish off we will need to have the answer in its original form of in terms of x's so plug in u=1+x to gain 2+2x

As you may see both ways generated the same answer. It doesn't matter which way you do alsong as you remember the rules, I will personally do both to double check my answer.

Answered by Sam G. Maths tutor

7266 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the gradient of the function y=x^3 at the point x=1?


Integrate the function : F'(x)=3x^2+4x-5


differentiate y = (4-x)^2


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences