Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

Answered by Vigneswaran T. Maths tutor

14727 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify the following expression to a fraction in its simplest form: [(4x^2 + 6x)/(2x^2 - x -6)] - [(12)/(x^2 - x - 2)]


How do I rewrite 2 cos x + 4 sin x as one sin function?


find the integral of f'(x)=2x+5


Can you explain the product rule when differentiating?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences