Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

Answered by Vigneswaran T. Maths tutor

14732 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function f(x) = x^2 * e^2x with respect to x


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


Integrate using by parts twice : ∫e^(x)*(cos(x))dx


For rectangles of area 100 m^2 what is the perimeter of the rectangle with the smallest perimeter?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences