Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0

(1+x)^3 = x^3 + 3x^2 + 3x + 1 (Can be calculated straight away by binomial method or by multiplying brackets individually)
if (1+x)^3 > 1 + 3x^2 + x^3then: x^3 + 3x^2 + 3x + 1 > 1 + 3x^2 + x^3 3x > 0 x > 0

Answered by Vigneswaran T. Maths tutor

14805 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate y=x^3+4x+1 when x=3


Solve (3x+6)/4 - (2x-6)/5 = (x+7)/8.


Find dy/dx when y=(3x-1)^10


Why is |z| = 1 a circle of radius one? (FP2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences