A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.

First of all expand the brackets in the equation. Then you can differentiate each term with respect to x. As one of the terms will be a product of x and y the product rule must be used to find the differential of that term. The key to these types of questions is that the differential of y with respect to x is dy/dx. This means that after differentiating each of the terms you will have an expression in terms of dy/dx, x and y. All you have to do from that point on wards is gather the terms with the dy/dx on one side to find an expression for dy/dx.After expanding the brackets:4x2 + x2y - 2y2 = 0After differentiating each term:8x + 2xy + x2(dy/dx) - 4y(dy/dx) = 0After rearranging to make (dy/dx) the subject:dy/dx = (8x+2xy)/(4y-x2)

Answered by Carlotta M. Maths tutor

3284 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the centre coordinates, and radius of the circle with equation: x^2 + y^2 +6x -8y = 24


Find the first and second derivative of f(x) = 6/x^2 + 2x


Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)


Integration by parts; ∫e^x sin(x) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences