A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.

First of all expand the brackets in the equation. Then you can differentiate each term with respect to x. As one of the terms will be a product of x and y the product rule must be used to find the differential of that term. The key to these types of questions is that the differential of y with respect to x is dy/dx. This means that after differentiating each of the terms you will have an expression in terms of dy/dx, x and y. All you have to do from that point on wards is gather the terms with the dy/dx on one side to find an expression for dy/dx.After expanding the brackets:4x2 + x2y - 2y2 = 0After differentiating each term:8x + 2xy + x2(dy/dx) - 4y(dy/dx) = 0After rearranging to make (dy/dx) the subject:dy/dx = (8x+2xy)/(4y-x2)

CM
Answered by Carlotta M. Maths tutor

3755 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by parts?


Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.


Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


y = x^2 − 2*x − 24*sqrt(x) - i) find dy/dx ii) find d^2y/dx^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences