g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).

Step 1: The denominator of the right-hand fraction is quadratic, so we can factorise this to (x+3)(x-2). This looks similar to the denominator of the left-hand fraction, suggesting we can combine the two. Step 2: To make both denominators equal, multiply the left-hand fraction by (x-2)/(x-2). This is the same as multiplying by 1, so does not change anything. Step 3: The two fractions can now be combined into a single fraction: [ x(x-2) + 3(2x+1) ] / [ (x+3) (x-2) ]. By expanding the top line further, we obtain [ x^2 + 4x + 3 ] / [ (x+3) (x-2) ]. Step 4: The numerator of this fraction is quadratic, so just as in step 1, we can factorise this to [ (x+3) (x+1) ] / [ (x+3) (x-2) ]. Step 5: The (x+3) terms on the top and bottom both cancel out, leaving g(x) = (x+1) / (x-2).

AS
Answered by Amar S. Maths tutor

5134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


Find the first three terms in the binomial expansion of (8-9x)^(2/3) in ascending powers of x


Integrate (sin(x))^6 - Further mathematics (De Moivre's theorem)


How do I differentiate a function of x and y with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences