Find the tangent of the following curve, y=xe^x, at x=1 expressing it in the form y=mx+c?

Firstly, we calculate the y-value when x=1, namely y=e. Then we need to find the gradient of this curve at x=1, which can be determined by taking the derivative of y and then valuate it at x=1. So dy/dx=xe^x+e^x=(x+1)e^x, at x=1 dy/dx=2e. Using the equation of a line given by y-y_0=m(x-x_0), where m is the gradient of the line (namely m=2e) and (x_0,y_0) is the coordinate that is given to us (namely x_0=1 and y_0=e), we obtain that y-e=2e(x-1), hence y=2ex-e is the tangent of this curve at x=1.

BS
Answered by Bruno S. Maths tutor

16833 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (5-√ 8)(1+√ (2)) in the form a+b√2 , where a and b are integers


How do I find the inverse of a function?


A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.


The curve has the equation y= (x^3)/(2x-1). Find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences