Solve the simultaneous equations 2x + 3y = 4, 3x + 6y = 3

Label the equations (1): 2x + 3y = 4 (2): 3x + 6y = 3We need the same number of x's or y's in the equations, so multiply (1) by 3 and (2) by 2 giving (3): 6x + 9y = 12 (4): 6x + 12y = 6Subtract (3) from (4) 6x + 12y - 6x - 9y = 6 - 12 so 3y= -6 so y= -2Substitute the y value into (1) to find x 2x + (3*-2) = 4    2x - 6 = 4       2x = 10        x = 5Check by substituting into (2) (35) + (6-2) = 15 - 12 = 3 the solutions workSo x = 5 and y = -2

Answered by Sophie S. Maths tutor

9122 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Which of the fractions 6/12, 9/8, 2/3 is equivalent to 12/18?


Nadia has £5 to buy pencils and rulers. Pencils are 8p each. Rulers are 30p each. She says “I will buy 15 pencils. Then I will buy as many rulers as possible. With my change I will buy more pencils.” How many pencils and how many rulers does she buy?


How do you apply the multiplication law of indices?


There is a spinner game at a fair. The spinner is numbered with all even numbers from 2 to 12. Each section is equal in size. Dan has numbers 4 and 10. What is the probability that he wins a prize? Give your answer as a fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences