Solve the simultaneous equations 2x + 3y = 4, 3x + 6y = 3

Label the equations (1): 2x + 3y = 4 (2): 3x + 6y = 3We need the same number of x's or y's in the equations, so multiply (1) by 3 and (2) by 2 giving (3): 6x + 9y = 12 (4): 6x + 12y = 6Subtract (3) from (4) 6x + 12y - 6x - 9y = 6 - 12 so 3y= -6 so y= -2Substitute the y value into (1) to find x 2x + (3*-2) = 4    2x - 6 = 4       2x = 10        x = 5Check by substituting into (2) (35) + (6-2) = 15 - 12 = 3 the solutions workSo x = 5 and y = -2

Answered by Sophie S. Maths tutor

8858 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A linear sequence starts a + 2b, a +6b, a + 10b. The 2nd has a value of 8 and the 5th term has a value of 44. What are the values of a and b?


Solve y = 2x^2 - 5x - 1 for x = -1 and x = 2


Simplify fully {x^2 -3x -4}/{x^2 + 4x +3}


The circle c has equation x^2+y^2 = 1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences