How do I find the intersection of a line and a curve?

Say you are given the equations of both a line and a curve, for example y=x2+8x-1 and y=3x-7, and asked to find where these two intersect. This just means where the two lines would cross or touch if drawn on the same graph.

To find these points you simply have to equate the equations of the two lines, where they equal eachother must be the points of intersection.

For this example this would mean x2+8x-1=3x-7

Collecting like terms leads to x2+5x+6=0

And from then this is a simple case of solving the quadratic. This expression factorises to (x+2)(x+3)=0 which implies either x=-2 or x=-3. To find the corresponding y coordinates for each point simply input these x values one at a time into either one of the original equations.

For x=-2, we get y=3(-2)-7=-13 so the point is (-2,-13)

For x=-3, we get y=3(-3)-7=-16 so the point is (-3,-16)

Both of these are valid intersection points for the line and curve given. 

Answered by Lauren M. Maths tutor

128462 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

On a graph, the lines with the equations y=x^2+5x+4 and y=-3x-8 meet at two distinct points. Find the coordinates of these meeting points.


Solve the quadratic equation x^2 + 3x + 2 = 0, by factorisation.


f(x) = 4x^2 + 8x - 5 ; complete the square to find the turning point of f(x).


£X was invested for 5 years, earning compound interest of 2% per year. After 5 years the total value of the investment was £11,040.81. How do I calculate the value of the invested amount £X?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences