Differentiate the function f(x) = x*sin(x)

This function is the product of the two functions 'x' and 'sin(x)'. Therefore we use the product rule, which says that the differential of a product of two functions is the differential of the first multiplied by the second, plus the differential of the second multiplied by the first:

d/dx(x*sin(x)) = (d/dx(x))sin(x) + x(d/dx(sin(x)))

                     = 1sin(x) + xcos(x)

                     = sin(x) + x*cos(x)

DB
Answered by Dylan B. Maths tutor

5813 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


find the integral of y=x^2 +sin^2(x) with respect to x between the limits 0 and pi


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


Is a line ax+by+c=0 tangent to a circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning