solve dy/dx = y(sec x)^2

Firstly, this differential equation should be solved using the separation of variables method, where all y terms are moved the left hand side of the equation and all x terms are moved to the right hand side. In this case, dividing both sides by y results in the equation (1/y)dy/dx = (sec x)^2. Then to find y, both sides should be integrated with respect to x, so that ∫(1/y)dy = ∫(sec x)^2 dx. The integral of 1/y with respect to y is ln y, the natural logarithm of y, and and the integral of (sec x)^2 with respect to x is tanx. Also, an arbitrary constant must be added. The resultant equation is ln y = tan x + c. This can be written explicitly in terms of y where y = e^(tan x + c) or y = Ae^(tanx) where A = e^c, another arbitrary constant.

MD
Answered by Max D. Maths tutor

7391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is released from rest at a height of 4m. At what speed does it hit the ground?


There's a school in India where only 60% of students have internet access. What is the probability of choosing eight students randomly, five of whom have internet access? (Info: Each student's internet access (or lack of it) is independent from all others


Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi


What is the gradient of the curve y = 2x^3 at the point (2,2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning